Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(21): 25819-25830, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37191386

RESUMO

This paper reports on a new strategy for obtaining homogeneous dispersion of grafted quantum dots (QDs) in a photopolymer matrix and their use for the integration of single-photon sources by two-photon polymerization (TPP) with nanoscale precision. The method is based on phase transfer of QDs from organic solvents to an acrylic matrix. The detailed protocol is described, and the corresponding mechanism is investigated and revealed. The phase transfer is done by ligand exchange through the introduction of mono-2-(methacryloyloxy) ethyl succinate (MES) that replaces oleic acid (OA). Infrared (IR) measurements show the replacement of OA on the QD surface by MES after ligand exchange. This allows QDs to move from the hexane phase to the pentaerythritol triacrylate (PETA) phase. The QDs that are homogeneously dispersed in the photopolymer without any clusterization do not show any significant broadening in their photoluminescence spectra even after more than 3 years. The ability of the hybrid photopolymer to create micro- and nanostructures by two-photon polymerization is demonstrated. The homogeneity of emission from 2D and 3D microstructures is confirmed by confocal photoluminescence microscopy. The fabrication and integration of a single-photon source in a spatially controlled manner by TPP is achieved and confirmed by auto-correlation measurements.

2.
Sensors (Basel) ; 20(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32846969

RESUMO

Polarization-maintaining fibers (PMFs) have always received great attention in fiber optic communication systems and components which are sensitive to polarization. Moreover, they are widely applied for high-accuracy detection and sensing devices, such as fiber gyroscope, electric/magnetic sensors, multi-parameter sensors, and so on. Here, we demonstrated the combination of a fiber Bragg grating (FBG) and Sagnac interference in the same section of a new type of PANDA-structure PMF for the simultaneous measurement of axial strain and temperature. This specialty PMF features two stress-applied parts made of lanthanum-aluminum co-doped silicate (SiO2-Al2O3-La2O3, SAL) glass, which has a higher thermal expansion coefficient than borosilicate glass used commonly in commercial PMFs. Furthermore, the FBG inscribed in this SAL PMF not only aids the device in discriminating strain and temperature, but also calibrates the phase birefringence of the SAL PMF more precisely thanks to the much narrower bandwidth of grating peaks. By analyzing the variation of wavelength interval between two FBG peaks, the underlying mechanism of the phase birefringence responding to temperature and strain is revealed. It explains exactly the sensing behavior of the SAL PMF based Sagnac interference dip. A numerical simulation on the SAL PMF's internal stress and consequent modal effective refractive indices was performed to double confirm the calibration of fiber's phase birefringence.

3.
Nat Commun ; 11(1): 3414, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32641727

RESUMO

Hybrid plasmonic nano-emitters based on the combination of quantum dot emitters (QD) and plasmonic nanoantennas open up new perspectives in the control of light. However, precise positioning of any active medium at the nanoscale constitutes a challenge. Here, we report on the optimal overlap of antenna's near-field and active medium whose spatial distribution is controlled via a plasmon-triggered 2-photon polymerization of a photosensitive formulation containing QDs. Au nanoparticles of various geometries are considered. The response of these hybrid nano-emitters is shown to be highly sensitive to the light polarization. Different light emission states are evidenced by photoluminescence measurements. These states correspond to polarization-sensitive nanoscale overlap between the exciting local field and the active medium distribution. The decrease of the QD concentration within the monomer formulation allows trapping of a single quantum dot in the vicinity of the Au particle. The latter objects show polarization-dependent switching in the single-photon regime.

4.
Opt Lett ; 45(4): 1017-1020, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32058530

RESUMO

The performance of sensors, including optical fiber sensors, is commonly limited by the tradeoff between a large dynamic range and a high resolution. In this Letter, in order to optimize both, we propose an inline multimode interferometer sensor based on a suspended-core microstructured optical fiber. Due to the existence of multiple pairs of mode interferences, the transmission spectrum of the interferometer consists of dense fringes modulated by a lower envelope. Since these mode interferences take place in the uniform material with the same length, the dense fringes and the lower envelope have an identical sensing response without crosstalk. Hence, the sensor integrates the large dynamic range of the lower envelope and the high resolution of the dense fringes. Strain-sensing performance is investigated to validate the characteristic of the large dynamic range and the high resolution of the proposed sensor. The dynamic range, theoretically 0-9200 µÉ›, is 12 times larger than for the dense fringes, and the resolution is 17.5 times higher than for the lower envelope.

5.
Opt Express ; 27(21): 30629-30638, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684307

RESUMO

Recent progress in designing optimized microstructured optical fiber spreads an application scenario of optical fiber sensing. Here, we investigate the bending measurement based on a specially designed hollow core photonic crystal fiber (HC-PCF). Numerical simulation indicates that the bending sensitivity is mainly determined by the diameter of the hollow core and also depends on the coupled modes. Experimentally, a direction-independent bending sensor is fabricated by sandwiching a segment of specially designed HC-PCF into two segments of single mode fibers. The bending sensitivity of our device is improved 10 times by increasing the diameter of the hollow core. Bending measurement is validated at two orthogonal planes. The maximum sensitivity up to 2.8 nm/deg is obtained at 14° bending angle. Additionally, a low thermal sensitivity of 2.5 pm/°C is observed from 18°C to 1000°C. The sensor is robust, easy to fabricate and cost effective, which is promising in the field of small-angle bending measurement under a large temperature range.

6.
ACS Appl Mater Interfaces ; 11(45): 42838-42845, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31635449

RESUMO

Hybrid organic-inorganic lead perovskites have a great potential in optoelectronic device applications because of their high stability, narrow band emission, and strong luminescence. Single crystals with few defects are the best candidates to disclose a variety of interesting and important properties for light-emitting devices. Here, we investigate a single-crystalline CH3NH3PbBr3 perovskite for its transport and electroluminescence properties. A simple fabrication method was used to obtain a 10 ± 2 µm channel between two gold wire electrodes, which showed bright intermittent electroluminescence near the interface of one wire after cooling down with a constant biasing voltage. The active region of the perovskite single crystal was pristine, well isolated from surroundings through fabrication to the characterization process. Our presented sample provided an ideal condition to study bulk ionic-electronic properties of hybrid halide perovskites. At constant 6 V bias, the current through the sample shows temperature-dependent oscillation with Arrhenius behavior, suggesting a thermally activated process. The light emission from the sample experiences an intermittent emission rate once every 26 ± 6 min. Here, we envisage that the current oscillations and intermittent emission are caused by ion-mediated negative differential resistance and conductive filament formation, respectively. The latter observation inspires future applications of the material from neuromorphic computing to the development of electroluminescence devices.

7.
Lab Chip ; 18(4): 655-661, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29362756

RESUMO

All-in-fiber optofluidics is an analytical tool that provides enhanced sensing performance with simplified analyzing system design. Currently, its advance is limited either by complicated liquid manipulation and light injection configuration or by low sensitivity resulting from inadequate light-matter interaction. In this work, we design and fabricate a side-channel photonic crystal fiber (SC-PCF) and exploit its versatile sensing capabilities in in-line optofluidic configurations. The built-in microfluidic channel of the SC-PCF enables strong light-matter interaction and easy lateral access of liquid samples in these analytical systems. In addition, the sensing performance of the SC-PCF is demonstrated with methylene blue for absorptive molecular detection and with human cardiac troponin T protein by utilizing a Sagnac interferometry configuration for ultra-sensitive and specific biomolecular specimen detection. Owing to the features of great flexibility and compactness, high-sensitivity to the analyte variation, and efficient liquid manipulation/replacement, the demonstrated SC-PCF offers a generic solution to be adapted to various fiber-waveguide sensors to detect a wide range of analytes in real time, especially for applications from environmental monitoring to biological diagnosis.


Assuntos
Técnicas Analíticas Microfluídicas , Miócitos Cardíacos/química , Fibras Ópticas , Troponina T/análise , Desenho de Equipamento , Humanos , Técnicas Analíticas Microfluídicas/instrumentação
8.
Opt Express ; 26(1): 544-551, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29328331

RESUMO

We propose and experimentally demonstrate a directional torsion sensor based on a Mach-Zehnder interferometer formed in a multicore fiber (MCF) with a ~570-µm-long helical structure (HS). The HS was fabricated into the MCF by simply pre-twisting and then heating with a CO2 laser splicing system. This device shows the capability of directional torsion measurement from -17.094 rad/m to 15.669 rad/m with the sensitivity of ~0.118 nm/(rad/m). Moreover, since the multiple interferences respond differently to torsion and temperature simultaneously, the temperature cross-sensitivity of the proposed sensor can be eliminated effectively. Besides, the sensor owns other merits such as easy fabrication and good mechanical robustness.

9.
Sci Rep ; 7: 46633, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28418041

RESUMO

Optical fiber sensors for strain measurement have been playing important roles in structural health monitoring for buildings, tunnels, pipelines, aircrafts, and so on. A highly sensitive strain sensor based on helical structures (HSs) assisted Mach-Zehnder interference in an all-solid heterogeneous multicore fiber (MCF) is proposed and experimentally demonstrated. Due to the HSs, a maximum strain sensitivity as high as -61.8 pm/µÎµ was experimentally achieved. This is the highest sensitivity among interferometer-based strain sensors reported so far, to the best of our knowledge. Moreover, the proposed sensor has the ability to discriminate axial strain and temperature, and offers several advantages such as repeatability of fabrication, robust structure and compact size, which further benefits its practical sensing applications.

10.
Opt Express ; 24(24): 27674-27682, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906336

RESUMO

An in-line optofluidic refractive index (RI) sensing platform is constructed by splicing a side-channel photonic crystal fiber (SC-PCF) with side-polished single mode fibers. A long-period grating (LPG) combined with an intermodal interference between LP01 and LP11 core modes is used for sensing the RI of the liquid in the side channel. The resonant dip shows a nonlinear wavelength shift with increasing RI over the measured range from 1.3330 to 1.3961. The RI response of this sensing platform for a low RI range of 1.3330-1.3780 is approximately linear, and exhibits a sensitivity of 1145 nm/RIU. Besides, the detection limit of our sensing scheme is improved by around one order of magnitude by introducing the intermodal interference.

11.
Sci Rep ; 6: 28190, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27305974

RESUMO

In this work, we designed a sensitivity-enhanced surface plasmon resonance biosensor structure based on silicon nanosheet and two-dimensional transition metal dichalcogenides. This configuration contains six components: SF10 triangular prism, gold thin film, silicon nanosheet, two-dimensional MoS2/MoSe2/WS2/WSe2 (defined as MX2) layers, biomolecular analyte layer and sensing medium. The minimum reflectivity, sensitivity as well as the Full Width at Half Maximum of SPR curve are systematically examined by using Fresnel equations and the transfer matrix method in the visible and near infrared wavelength range (600 nm to 1024 nm). The variation of the minimum reflectivity and the change in resonance angle as the function of the number of MX2 layers are presented respectively. The results show that silicon nanosheet and MX2 layers can be served as effective light absorption medium. Under resonance conditions, the electrons in these additional dielectric layers can be transferred to the surface of gold thin film. All silicon-MX2 enhanced sensing models show much better performance than that of the conventional sensing scheme where pure Au thin film is used, the highest sensitivity can be achieved by employing 600 nm excitation light wavelength with 35 nm gold thin film and 7 nm thickness silicon nanosheet coated with monolayer WS2.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Técnicas Biossensoriais/instrumentação , Ouro/química , Luz , Silício/química
12.
Opt Lett ; 41(2): 380-3, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26766719

RESUMO

We report on a high-performance curvature sensor based on a long-period grating (LPG) in a dual-concentric-core fiber (DCCF). The LPG is inscribed to couple light from the fundamental mode of the central core to the ring-core modes, resulting in the generation of a series of resonant dips. Two adjacent dips shift toward each other when the LPG is bent. By monitoring the variation of the wavelength interval between these two dips, this LPG can be applied in curvature measurement with a sensitivity as high as -9.046 nm/m(-1). More importantly, such a wavelength interval is almost immune to the cross impacts of temperature and axial strain, since the sensitivities to temperature and axial strain are only 2.6 pm/°C and 0.083 pm/µÎµ, respectively.

13.
Opt Lett ; 40(6): 894-7, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25768140

RESUMO

We study third-harmonic generation (THG) in parallel-coupled waveguides where the spatial modulation of the mode intensity provides quasi-phase matching, called coupling-length phase matching (CLPM), for efficient nonlinear frequency conversion. Different types of CLPM are investigated for THG, and it is found that two sets of CLPM conditions can be practically implemented with traditional waveguides. These two CLPM conditions are further investigated by considering nonlinear phase modulations, which can degrade the CLPM-based THG conversion. However, up to 45% efficiency is still possible in this scheme. The greatest significance of this approach is that the requirement of perfect phase matching in a single waveguide is no longer necessary, leading to an alternative waveguide design for THG.

14.
Biosens Bioelectron ; 64: 227-33, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25222325

RESUMO

An ultrasensitive surface enhanced Raman spectroscopy (SERS) based sensing platform was developed to detect the mean sialic acid level on the surface of single cell with sensitivity as low as 2 fmol. This platform adopted the use of an interference-free Raman tag, 4-(dihydroxyborophenyl) acetylene (DBA), which selectively binds to sialic acid on the cell membrane. By loading the side channel of a photonic crystal fiber with a mixture of gold nanoparticles and DBA-tagged HeLa cell, and subsequently propagating laser light through the central solid core, strong SERS signal was obtained. This SERS technique achieved accurate detection and quantification of concentration of sialic acid on a single cell, surpassing previously reported methods that required more than 10(5) cells. Moreover, this platform can be developed into a clinical diagnostic tool to potentially analyze sialic acid-related diseases such as tumor malignancy and metastasis in real-time.


Assuntos
Membrana Celular/química , Tecnologia de Fibra Óptica/instrumentação , Ouro/química , Nanopartículas Metálicas/química , Ácido N-Acetilneuramínico/análise , Análise Espectral Raman/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Células HeLa , Humanos , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Sensibilidade e Especificidade
15.
Opt Lett ; 38(20): 4070-3, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24321925

RESUMO

We report on the fabrication of a fiber Bragg grating (FBG) with multiple resonances in a two-dimensional waveguide array microstructured optical fiber containing 91 cores. Theoretical investigation reveals that these resonances originate from the identical and nonidentical mode couplings between forward-propagating and backward-propagating LP0m-like (m=1, 2, 3; LP refers to linearly polarized) supermodes. Since both the central wavelength and minimum transmission of these resonant dips respond differently to curvature and axial strain, this FBG can be applied in the simultaneous measurement of curvature and axial strain.

16.
Opt Express ; 17(26): 24244-9, 2009 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-20052135

RESUMO

We report a continuous variable key distribution system that achieves a final secure key rate of 3.45 kilobits/s over a distance of 24.2 km of optical fiber. The protocol uses discrete signaling and post-selection to improve reconciliation speed and quantifies security by means of quantum state tomography. Polarization multiplexing and a frequency translation scheme permit transmission of a continuous wave local oscillator and suppression of noise from guided acoustic wave Brillouin scattering by more than 27 dB.


Assuntos
Segurança Computacional/instrumentação , Fibras Ópticas , Refratometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Telecomunicações/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...